EE 505

Lecture 27

ADC Design

- Pipeline
- Aperture Uncertainty
- Cyclic Architectures
- Eliminating input S/H

SAR ADC Design
Oversampled Data Converters

Sampling Noise

If the ON impedance of the switches is small and it is assumed that $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}, \mathrm{R}_{\mathrm{S} 4}=\mathrm{R}_{\mathrm{S} 5}=\mathrm{R}_{\mathrm{SW}}$, it can be shown that for $\mathrm{C}_{1}=\mathrm{C}_{2}$

$$
\hat{\boldsymbol{v}}_{\text {wiws }}=\sqrt{\frac{\mathrm{kT}}{2 C}+\frac{\mathrm{kT}}{4} \mathrm{R}_{\mathrm{sw}} \mathrm{~GB}}
$$

Too much GB or too large of R_{SW} can increase sampled noise voltage
Too small of R_{Sw} will not derive any benefit and will increase power, area, and driving problems

GB must be large enough to have complete settling

Review from Last Lecture

Sampling Noise

Theorem 1 If $\boldsymbol{v}_{\mathrm{n}}(\mathrm{t})$ is a continuous-time zero-mean noise source with power spectral density S_{V}, then the spectral density of $\boldsymbol{V}_{\mathrm{OUT}}$ is given by the expression

$$
\mathbf{S}_{\text {vorr }}=|\mathrm{T}(\mathrm{~s})|_{s=j \omega}^{2} \mathbf{S}_{v}
$$

Theorem 2 If $v(\mathrm{t})$ is a continuous-time zero-mean noise voltage with power spectral density S_{V}, then the RMS value of the continuous-time noise is given by

$$
V_{\mathrm{zus}}=\sqrt{\int_{i=0}^{\infty} \mathrm{S}_{\mathrm{v}} \mathrm{df}}
$$

Note: There are some parts of the hypothesis of this theorem that have not been stated such as stationary of the distribution and no correlation between samples spaced T seconds apart..

Sampling Noise

Theorem 3 If $\mathrm{V}(\mathrm{t})$ is a continuous-time zero-mean noise voltage and $<\mathrm{V}(\mathrm{kT})>$ is a sampled version of $\mathrm{V}(\mathrm{t})$ sampled at times $\mathrm{T}, 2 \mathrm{~T}, \ldots$. then the RMS value of the continuous-time waveform is the same as that of the sampled version of the waveform. This can be expressed as

$$
V_{\text {mus }}=\hat{V}_{\text {mus }}
$$

Note: There are some parts of the hypothesis of this theorem that have not been stated such as stationary of the distribution and no correlation between samples spaced T seconds apart..

Sampling Noise

Theorem 4 If $V(t)$ is a continuous-time zero-mean noise source and $<\mathrm{V}(\mathrm{kT})\rangle$ is a sampled version of $\mathrm{V}(\mathrm{t})$ sampled at times $\mathrm{T}, 2 \mathrm{~T}, \ldots$. then the standard deviation of the random variable $\mathrm{V}(\mathrm{kT})$, denoted as σ_{v} satisfies the expression

$$
\sigma_{v}=V_{\mathrm{mes}}=\hat{V}_{\mathrm{mase}}
$$

Theorem 5 The RMS value and the standard deviation of the noise voltage that occurs in the basic switched-capacitor sampler is related to the capacitor value by the expression

$$
\hat{\mathrm{V}}_{\text {Rus }}=\mathrm{V}_{\text {Rus }}=\sigma_{v}=\sqrt{\frac{\mathrm{kT}}{\mathrm{C}}}
$$

Review from Last Lecture

Sampling Noise

$$
v_{\max }=\sqrt{\frac{\mathrm{kT}}{\mathrm{C}}}
$$

Key Result, Continuous-time noise at $\mathrm{V}_{\text {OUT }}$

$$
\hat{v}_{\text {mast }}=\sqrt{\frac{\mathrm{KT}}{\mathrm{C}}}
$$

Key Result, Discrete-time noise at $\mathrm{V}_{\text {OUT }}$

Review from Last Lecture

Sampling Noise

$$
\beta_{2}=\frac{C_{2}}{C_{1}+C_{2}}
$$

If the ON impedance of the switches is small and it is assumed that $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}, \mathrm{R}_{\mathrm{S4}}=\mathrm{R}_{\mathrm{S} 5}=\mathrm{R}_{\text {SW }}$, it can be shown that noise on output is

$$
\begin{aligned}
& \boldsymbol{v}_{\text {teme }}=\sqrt{k T R G B} \\
& \hat{v}_{\text {vemase }}=\sqrt{\frac{2 k T}{C}+k T R G B} \\
& \hat{v}_{\text {max }}=\sqrt{\frac{k T}{2 C}+\frac{k T R G B}{4}}
\end{aligned}
$$

When is the continuous-time SC noise really of concern?

$$
R_{\max }=\frac{1}{k T 2^{2 \operatorname{lig}^{+2}}\left(\mathrm{n}_{\mathrm{sT}}+1\right) 2 \ln 2 f_{\mathrm{ck}}}
$$

$\mathrm{R}_{\text {MAX }}(\mathrm{fCLK}, \mathrm{n})$

Review from Last Lecture

Sampling Noise

Sampling noise from all stages must be referred back to input !

$$
\begin{aligned}
& \boldsymbol{V}_{\text {wnus }}^{2}=\boldsymbol{V}_{\text {wi }}^{2}+\frac{1}{\mathrm{~A}_{1}^{2}} \boldsymbol{V}_{\mathrm{wz}}^{2}+\frac{1}{\mathrm{~A}_{1}^{2} \mathrm{~A}_{2}^{2}} \boldsymbol{V}_{\mathrm{ws}}^{2}+\ldots+\frac{1}{\mathrm{~A}_{1}^{2} \mathrm{~A}_{2}^{2} \cdots \mathrm{~A}_{\mathrm{ni1}}^{2}} \boldsymbol{V}_{\mathrm{wn}}^{2} \\
& \boldsymbol{V}_{\text {wnws }}=\sqrt{\boldsymbol{V}_{\mathrm{ww}}^{2}+\sum_{\mathrm{ka2}}^{n}\left(\frac{\boldsymbol{V}_{\mathrm{wn}}}{\prod_{1=1}^{n} \mathrm{~A}_{i}}\right)^{2}}
\end{aligned}
$$

See Katyal,Lin and Geiger, ISCAS, for capacitor sizing for minimization of noise and power

Bootstrapped Switch

Bootstrapping Principle

Conceptual Realization

- May have difficult time turning on some switches
- May stress gate oxide !

Pipelined Data Converter Design Guidelines

Issue

1. ADC offsets, Amp Offsets, Finite Op Amp Gain, DAC errors, Finite Gain Errors all cause amplifiers to saturate
2. Op Amp Gain causes finite gain errors and introduces noninearity
3. Op amp settling must can cause errors
4. Power dissipation strongly dependent upon GB of Op Amps
5. Choice of FB Amplifier Architecture seriously impacts performance
6. Correct interpretation of α_{k} 's is critical

Strategy

1. Out-range protection circuitry will remove this problem and can make pipeline robust to these effects if α_{k} 's correctly interpreted
a) Use Extra Comparators
b) Use sub-radix structures
2. a) Select op amp architecture that has acceptable signal swing
b) Select gain large enough at boundary of range to minimize nonlinearity and gain errors
3. Select GB to meet settling requirements (degrade modestly to account for slewing)
4. Minimize C_{L}, use energy efficient op amps, share or shut down op amp when not used,scale power in latter stages, eliminate input S / H if possible, interleave at high frequencies. Good (near optimal) noise distribution strategy should be followed.
5. Bottom plate sampling, bootatrapping, clock advance to reduce aperature uncertainty,critical GB, parasitic insensitivity needed, β dependent upon architecture and phase, compensation for worstcase β, TG if needed
a) Accurately set α_{k} values
b) Use analog or digital calibration

Pipelined Data Converter Design Guidelines

Issue

7. Sampling operation inherently introduces a sampled-noise due to noise in resistors
8. Signal-dependent tracking errors at input introduce linearity degradation

Strategy
7. Select the capacitor sizes to meet noise requirements. Continuous-time noise can also be present but is often dominated by sampled noise. Size switches to meet settling and noise requirements. Excessive GB will cause noise degradation in some applications, include noise from all stages (not just first stage).
8. Bootstrapped switches almost always used at input stage. Must avoid stressing oxide on bootstrapped switches

Aperture Uncertainty

$$
\begin{aligned}
& \left.\frac{\partial \mathrm{V}_{\mathrm{w}}}{\partial \mathrm{t}}=\frac{\mathrm{V}_{\text {aff }}}{2} \omega \cos \omega \mathrm{t}\right) \\
& \left.\frac{\partial \mathrm{V}_{\mathrm{w}}}{\partial \mathrm{t}}\right|_{\text {max }}=\frac{\mathrm{V}_{\text {酐 }}}{2} \omega \\
& \Delta T<\frac{\Delta V_{\text {max }}}{\left.\frac{\partial V_{\mathrm{w}}}{\partial \mathrm{t}}\right|_{\text {max }}}=\frac{\mathrm{V}_{\text {mef }} / 2^{n+1}}{\omega \mathrm{~V}_{\text {nef }} / 2} \\
& \Delta T<\frac{1}{\omega 2^{n}}
\end{aligned}
$$

Aperture Uncertainty

Example: If $\mathrm{f}_{\mathrm{CLK}}=200 \mathrm{MHz}, \mathrm{n}=14$ determine the aperture uncertainty

$$
\Delta T<\frac{1}{2 \pi(2 \mathrm{E} 8) 2^{14}}=4.86 \mathrm{E}-14 \cong .05 \mathrm{psec}
$$

Aperture uncertainty requirements can be very stringent!

Elimination of Input S/H

Why is input S / H used?

Elimination of Input S/H

Why is input S / H used?
Conventional Wisdom:
Because want right sample at input Because gain stages mess up when input is time varying

But what does an ADC error do to the Boolean output?
$\mathrm{V}_{\mathrm{in}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \alpha_{\mathrm{k}} \mathrm{d}_{\mathrm{k}}+\mathrm{f}($ offset $)+\mathrm{f}($ residue $)$
Absolutely nothing if over-range protection is provided !
But do need correct value of $\mathrm{V}_{\text {IN }}$ when creating the residues !!

Elimination of Input S/H

Why is input S / H used?
Conventional Wisdom:
Because want right sample at input
Because gain stages mess up when input is time varying
Observation: If SC structures used for the gain stages, there is an inherent sampling that takes place at the input of each stage - including the first stage

Advance sampling clock a little so that sample is taken at quiet time but not too much to loose over-range protection

- This simply skews the sampling times
- Probably need to bootstrap the input sampling switch
- Bottom plate sampling

Fully Differential Architectues

Second-order spectral component is often most significant contributor to SFDR and THD limitations in single-ended structures

Noise from ADC and other components, coupled through the substrate, often source of considerable noise in an ADC

- All even-ordered spectral components are eliminated with fully-differential symmetric structures
- Common mode noise is rejected with fully-differential symmetric structures

Almost all implementations of Pipelined ADCs are fully-differential
Straightforward modification of the single-ended concepts discussed here
Authors often present structures in single-ended mode and then just mention that differential structure was used

Modest (but small) increase in area and power for fully differential structures
Signal level increases by factor of 2 and device noise typically increases by 20 $\sqrt{2}$ as well

Pipelined Data Converter Design Guidelines

Issue

1. ADC offsets, Amp Offsets, Finite Op Amp Gain, DAC errors, Finite Gain Errors all cause amplifiers to saturate
2. Op Amp Gain causes finite gain errors and introduces noninearity
3. Op amp settling must can cause errors
4. Power dissipation strongly dependent upon GB of Op Amps
5. Choice of FB Amplifier Architecture seriously impacts performance
6. Correct interpretation of α_{k} 's is critical

Strategy

1. Out-range protection circuitry will remove this problem and can make pipeline robust to these effects if α_{k} 's correctly interpreted
a) Use Extra Comparators
b) Use sub-radix structures
2. a) Select op amp architecture that has acceptable signal swing
b) Select gain large enough at boundary of range to minimize nonlinearity and gain errors
3. Select GB to meet settling requirements (degrade modestly to account for slewing)
4. Minimize C_{L}, use energy efficient op amps, share or shut down op amp when not used,scale power in latter stages, eliminate input S / H if possible, interleave at high frequencies. Good (near optimal) noise distribution strategy should be followed.
5. Bottom plate sampling, bootatrapping, clock advance to reduce aperature uncertainty,critical GB, parasitic insensitivity needed, β dependent upon architecture and phase, compensation for worstcase β, TG if needed
a) Accurately set α_{k} values
b) Use analog or digital calibration

Pipelined Data Converter Design Guidelines

Issue

7. Sampling operation inherently introduces a sampled-noise due to noise in resistors
8. Signal-dependent tracking errors at input introduce linearity degradation
9. Aperature uncertainty can cause serious errors
10. Input S / H major contributor to nonlinearity and power dissipation
11. Data converters often have stringent SNR and SNDR requirements

Strategy

7. Select the capacitor sizes to meet noise requirements. Continuous-time noise can also be present but is often dominated by sampled noise. Size switches to meet settling and noise requirements. Excessive GB will cause noise degradation in some applications, include noise from all stages (not just first stage).
8. Bootstrapped switches almost always used at input stage. Must avoid stressing oxide on bootstrapped switches
9. Since latency usually of little concern, be sure that a clean clock is used to control all sampling.
10. Eliminate S / H but provide adequate over-range protection for this removal. Reduces power dissipation and improves linearity!
11. Use fully differential structures to obtain dramatic improvements in SNR and SNDR

Cyclic (Algorithmic) ADCs

Cyclic (algorithmic) ADC
Reduces throughput but also area

Cyclic (Algorithmic) ADCs

Can bypass bootstrap after initial sample is taken

SAR ADC

- DAC Controller stores estimates of input in Successive Approximation Register (SAR)
- At end of successive approximation process, ADC output is in SAR
- Eliminates the power-consuming amplifiers of the pipelined ADC
- Much slower than pipelined ADC
- S / H at the input is essential
- Can have excellent power performance
- Widely used structure with renewed attention in recent years

SAR ADC

- Any DAC structure can be used
- In basic structure, single comparator can be used
- Performance entirely determined by S/H, DAC, and comparator
- Very simple structure and relatively fast design procedure
- If offset voltage of comparator is fixed, comparator offset will not introduce any nonlinearity

SAR ADC

- Any DAC structure can be used
- In basic structure, single comparator can be used
- Performance entirely determined by S/H, DAC, and comparator
- Very simple structure and relatively fast design procedure
- If offset voltage of comparator is fixed, comparator offset will not introduce any nonlinearity

SAPADBC

Typical Operation (shown for 5 bits)

- Requires n+1 clock cycles
- Can be extended to large number of bits (16 or more)
- Comparator requires large CM range
- Speed limited by S/H

SAR ADC

Typical Operation (shown for 5 bits)

- Two or more bit periods can be added to S / H
- Slows overall operation proportionally but overhead small for large n

SAR ADC

- Does not recover from errors
- Particularly problematic when errors occur on earlier bits
- Over-range protection can be added but at expense of additional clock periods

SAR ADC

Note notation difference
$\overrightarrow{\mathrm{x}}_{\text {OUT }}=\left\langle\mathrm{d}_{\mathrm{n}-1}, \mathrm{~d}_{\mathrm{n}-2}, \ldots \mathrm{~d}_{0}>\right.$
d_{0} is the Least Significant Bit (LSB)
d_{n-1} is the Most Significant Bit (MSB)

Charge Redistribution DAC could be used in SAR ADCs

- Capacitors usually binary weighted
- With this DAC, typical common-mode input required for comparator
- Standard S/H also required

SAR ADC

Alternate Charge Redistribution DAC

- During sampling phase, input is sampled on all capacitors
- During successive approximation process, capacitors are alternately connected to ground or $\mathrm{V}_{\mathrm{REF}}$
- Voltage on common node will converge to 0
- Comparator is always comparing to ground thus reducing common-mode nonlinearity errors
- Note input sample is not held independently throughout the entire conversion process
- Bootstrapped switch is critical during sampling phase
- Parasitic capacitances on V_{C} node do not affect final output (Bottom plate)
- Major source of power dissipation is in the charge redistribution process

SAPADBC

Alternate Charge Redistribution DAC

$$
C_{i}=C 2^{n-i} \quad 1 \leq i \leq n
$$

Define Q to be the charge sampled onto capacitors $Q=Q_{\text {SAMP }}$ and define $g_{i}=\bar{d}_{i}$ and $\phi_{X}=\bar{\phi}_{S}$

$$
\left.\begin{array}{l}
\quad Q=2^{n} C V_{I N} \\
Q=\sum_{i=1}^{n} C C_{i}\left(d_{i} V_{\text {REF }}-V_{C}\right)-C V_{c}
\end{array}\right] \quad \begin{aligned}
& Q=\sum_{i=1}^{n} C 2^{n-i}\left(d_{i} V_{\text {REF }}-V_{C}\right)-C V_{C}=C V_{\text {REF }} \sum_{i=1}^{n} d_{2} 2^{n-i}-C V_{C}\left(\sum_{i=1}^{n} 2^{n-i}+1\right) \\
& \longleftrightarrow Q=C V_{\text {REF }} \sum_{i=1}^{n} d_{i} 2^{n-i}-C V_{C}\left(2^{n}\right)
\end{aligned}
$$

SAR ADC

Alternate Charge Redistribution DAC

$$
\begin{aligned}
& C V_{\text {REF }} \sum_{i=1}^{n} d_{i} 2^{n-i}-C V_{C}\left(2^{n}\right)=2^{n} C V_{I N} \\
& V_{I N}=V_{\text {REF }} \sum_{i=1}^{n} d_{i} \frac{2^{n-i}}{2^{n}}-V_{c} \\
& V_{\mathbb{N}}=V_{\text {REF }} \sum_{i=1}^{n} d_{i} 2^{-i}-V_{C}
\end{aligned}
$$

If the SAR output is adjusted so that

$$
-\frac{V_{R E F}}{2^{n}} \leq V_{C} \leq \frac{V_{R E F}}{2^{n}}
$$

It follows that

$$
V_{R E F} \sum_{i=1}^{n} d_{i} 2^{-i}-\frac{V_{R E F}}{2^{n}} \leq V_{I N} \leq V_{R E F} \sum_{i=1}^{n} d_{i} 2^{-i}+\frac{V_{R E F}}{2^{n}}
$$

SAR ADC

Alternate Charge Redistribution DAC

Binary Search Process Description

1. After sampling $\mathrm{V}_{\mathbb{N}}$ with φ_{S}, envision closing all g switches and $\varphi_{\mathrm{X}} \mathrm{V}_{\mathrm{C}}$ will be $-\mathrm{V}_{\mathbb{I N}}$.
2. Close d_{1} It follows that

$$
C_{1}\left(V_{\text {REF }}-V_{C}\right)-\sum_{i=2}^{n} C_{i} V_{C}-C V_{C}=\sum_{i=1}^{n} C i V_{V I N}+C V_{I N}
$$

solving obtain $V_{C}=2^{-1} V_{\text {REF }}-V_{\text {IN }}$

$$
\text { thus } \quad V_{c}>0 \quad \Rightarrow d_{1}=0
$$

3. Since $d_{1}=0$, close g_{1} and now close d_{2}. It follows that

$$
\begin{aligned}
& V_{C}=2^{-2} V_{\text {REF }}-V_{I N} \\
& \text { thus } V_{C}<0 \quad \Rightarrow d_{2}=1
\end{aligned}
$$

SAR ADC

Alternate Charge Redistribution DAC

Binary Search Process Description

4. Since $d_{2}=1$, leave d_{2} closed and now close d_{3}. It follows that

$$
\begin{aligned}
& V_{C}=2^{-3} V_{\text {REF }}+2^{-2} V_{\text {REF }}-V_{\text {IN }} \\
& \text { thus } \quad V_{c}>0 \Rightarrow d_{3}=0
\end{aligned}
$$

5. Since $d_{3}=0$, open d_{3} and now close d_{4}. It follows that

$$
V_{C}=2^{-4} V_{\text {REF }}+2^{-2} V_{R E F}-V_{I N}
$$

$$
\text { thus } \quad V_{c}<0 \Rightarrow d_{4}=1
$$

6. Since $\mathrm{d}_{4}=1$, keep d_{4} closed and now close d_{5}. It follows that

$$
\begin{aligned}
& \qquad V_{C}=2^{-5} V_{\text {REF }}+2^{-4} V_{\text {REF }}+2^{-2} V_{\text {REF }}-V_{I N} \\
& \text { thus } \quad V_{C}>0 \Rightarrow d_{5}=0
\end{aligned}
$$

SAR ADC

Alternate Charge Redistribution DAC

SAR ADC

C-2C Array for Charge Redistribution DAC

Can a C-2C array be used for the charge-redistribution DAC?

Yes - but internal nodes would all need to settle!
Can a counter be used rather than a binary search to obtain the SAR code?
Yes - but conversion time would be long with worst-case requiring 2^{n} periods

SAR ADC

- Concepts are often expressed in single-ended structures
- Fully differential structures widely used
- Distinction between reference voltages often not clearly stated

Is Common-Mode input 0 or $\mathrm{V}_{\text {REF }} / 2$? Is maximum input $\mathrm{V}_{\text {REF }}, 2 \mathrm{~V}_{\text {REF }}$ or $4 \mathrm{~V}_{\text {REF }}$:

- Single-ended $\mathrm{V}_{\text {REF }}$
- Single-ended Differential Input $+\mathrm{V}_{\text {REF }}$, $-\mathrm{V}_{\text {REF }}$
- Differential Input

Example of Fully Differential Implementation

Another example of Fully Differential Implementation with different switching sequence and different references.

SAR ADC

Charge Redistribution ADC with reduced charge redistribution energy
Goal: Reduce unnecessary switching inherent in the original process by first switching all capacitors to $\mathrm{V}_{\text {REF }}$ and then returning to ground if test fails.
[PDF] A 10-bit 50-MS/s SAR ADC with a monotonic
[PDF] ncku.edu.tw capacitor switching procedure

Viewlt@ISU

CC Liu, SJ Chang, GY Huang... - IEEE Journal of Solid ..., 2010 msicdt.ee.ncku.edu.tw
This paper presents a low-power $\mathbf{1 0}$-bit $50-\mathrm{MS} / \mathrm{s}$ suc-cessive approximation register (SAR) analog-to-digital converter (ADC) that uses a monotonic capacitor switching procedure. Compared to converters that use the conventional procedure, the average switching energy
it 20 Cited by 788 Related articles All 10 versions 00 550 (April 2017 I believe) 788 (4/17/2019)

Samples input on array connected between $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {REF }}$

Only change state if output must be decreased

For 10-bit ADC, reported switching energy and total capacitance reduced by about 81% and 50%, respectively

Does not consider kT/C noise since resolution is small

SAR ADC

Charge Redistribution ADC with reduced charge redistribution energy

Goal: Only switch if needed!

SAR ADC

SAR ADC

Charge Sharing ADC with reduced charge redistribution energy

Goal: Have only passive switching

[PDF] A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure
CC Liu SJ Chang GY Huang . IEEE Journal of Solid
2010CC Liu, SJ Chang, GY msicdt.ee.ncku.edu.tw
This paper presents a low-power 10-bit 50-MS/s suc-cessive approximation register (SAR analog-to-digital converter (ADC) that uses a monotonic capacitor switching procedure. Compared to converters that use the conventional procedure, the average switching eng
is 20 Cited by 788 Related articles All 10 versions

SAR ADC

Charge Sharing ADC with reduced charge redistribution energy

Goal: Have only passive switching

A $65 \mathrm{fJ} /$ conversion-step 0-to-50MS/s 0-to-0.7 mW 9b charge-sharing SAR ADC in 90 nm digital CMOS
J Craninckx, G Van der Plas - Solid-State Circuits Conference, ..., 2007 - ieeexplore.ieee.org Abstract: A fully dynamic SAR ADC is proposed that uses passive charge-sharing and an asynchronous controller to achieve low power consumption. No active circuits are needed for high-speed operation and all static power is removed, offering power consumption
Cited by 286 Related articles All 2 versions Cite Save More

SAR ADC

Lots of ongoing activity in SAR ADCs

) A 10-b 600-MS/s 2-way time-interleaved SAR ADC with mean absolt
A 32 Gb/s ADC-based PAM-4 receiver with 2-bit/stage SAR ADC and

Jeonggoo Song; Nan Sun
2018 IEEE Custom Integrated Circuits Conference (CICC)
Year: 2018
Pages: 1-4
Cited by: Papers (2)
An 11b 80MS/s SAR ADC With Speed-Enhanced SAR Logic and HighLinearity CDAC
Yuefeng Cao ; Yongzhen Chen ; Zhekan Ni ; Fan Ye ; Junyan Ren 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) Year: 2018
Pages: 18-21

Shiva Kiran ; Shengchang Cai ; Ying Luo ; Sebastian Hoyos ; Samuel Palermo
2018 IEEE Custom Integrated Circuits Conference (CICC)
Year: 2018
Pages: 1-4
Cited by: Papers (4)

```
A 24-to-72GS/s 8b time-interleaved SAR ADC with 2.0-to3/RpJ/conversion and >30dB SNDR at nyquist in 14 nm CMOS FinFET Lukas Kull ; Danny Luu ; Christian Menolfi ; Matthias Braendli ; Pier Andrea Francese ; Thomas Morf ; Marcel Kossel ; Alessandro Cevrero ; Ilter Ozkaya ; Thomas Toifl
2018 IEEE International Solid - State Circuits Conference - (ISSCC) Year: 2018
Pages: 358-360
```

An 18-bit 2MS/s pipelined SAR ADC utilizing a sampling distortion cancellation circuit with -107 dB THD at 100 kHz
Derek Hummerston ; Peter Hurrell
2017 Symposium on VLSI Circuits
Year: 2017
Pages: C280-C281
Cited by: Papers (2)

SAR ADC

Lots of ongoing activity in SAR ADCs

) A 10-b 600-MS/s 2-way time-interleaved SAR ADC with mean absolute deviation based background timing-skew calibration Jeonggoo Song; Nan Sun
2018 IEEE Custom Integrated Circuits Conference (CICC)
Year: 2018
Pages: 1-4
Cited by: Papers (2)

A 24-to-72GS/s 8b time-interleaved SAR ADC with 2.0 -to-
3/RpJ/conversion and >30dB SNDR at nyquist in 14nm CMOS FinFET Lukas Kull ; Danny Luu ; Christian Menolfi ; Matthias Braendli ; Pier Andrea Francese ; Thomas Morf ; Marcel Kossel ; Alessandro Cevrero ; Ilter Ozkaya ; Thomas Toifl
2018 IEEE International Solid - State Circuits Conference - (ISSCC)
Year: 2018
Pages: 358-360

A 12-bit 20-MS/s SAR ADC With Fast-Binary-Window DAC Switching in 180nm CMOS
Yung-Hui Chung ; Yi-Shen Lin ; Qi-Feng Zeng
2018 IEEF. $F_{\text {F }}$ Asia Pacific Conference on Circuits and Systems (APCCAS) Year: 2018
Pages: 34-37

IEEE Conferences

- Abstract ((html))

만 (2687 Kb)
(C)

A $32 \mathrm{~Gb} / \mathrm{s}$ ADC-based PAM-4 receiver with 2-bit/stage SAR ADC and partially-unrolled DFE
Shiva Kiran ; Shengchang Cai ; Ying Luo ; Sebastian Hoyos ; Samuel

Palermo

2018 IEEE Custom Integrated Circuits Conference (CICC)
Year: 2018
Pages: 1-4
Cited by: Papers (4)

```
An 11b 80MS/s SAR ADC With Speed-Enhanced SAR Logic and High-
Linearity CDAC
Yuefeng Cao ; Yongzhen Chen ; Zhekan Ni ; Fan Ye ; Junyan Ren
2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)
Year: }201
Pages: 18-21
```


Linearity CDAC

Yuefeng Cao ; Yongzhen Chen ; Zhekan Ni ; Fan Ye ; Junyan Ren
Year: 2018
Pages: 18-21

An 18-bit 2MS/s pipelined SAR ADC utilizing a sampling distortion cancellation circuit with -107 dB THD at 100 kHz
Derek Hummerston ; Peter Hurrell
2017 Symposium on VLSI Circuits
Year: 2017
Pages: C280-C281
Cited by: Papers (2)

SAR ADC

Lots of ongoing activity in SAR ADCs

A 510nW 12-bit 200kS/s SAR-assisted SAR ADC using a re-switching technique
Yao-Sheng Hu ; Kai-Yue Lin ; Hsin-Shu Chen
2017 Symposium on VLSI Circuits
Year: 2017
Pages: C238-C239
27.7 A 10b 2.6GS/s time-interleaved SAR ADC with background timingskew calibration

Chin-Yu Lin ; Yen-Hsin Wei ; Tai-Cheng Lee
2016 IEEE International Solid-State Circuits Conference (ISSCC)
Year: 2016
Pages: 468-469
Cited by: Papers (7)
28.4 A 12b 330MS/s pipelined-SAR ADC with PVT-stabilized dynamic amplifier achieving <1dB SNDR variation
Hai Huang ; Sudipta Sarkar ; Brian Elies ; Yun Chiu
2017 IEEE International Solid-State Circuits Conference (ISSCC)
Year: 2017
Pages: 472-473
Cited by: Papers (6)

[^0]\square An energy reduced sampling technique applied to a 10b 1MS/s SAR ADC
Harijot Singh Bindra; Anne-Johan Annema ; Simon M. Louwsma; Ed J. M. van Tuijl ; Bram Nauta
ESSCIRC 2017-43rd IEEE European Solid State Circuits Conference
Year: 2017
Pages: 235-238
Cited by: Papers (2)
IEEE Conferences

- Abstract (html) 몀 (1347 Kb)
- 27.3 Area-efficient 1GS/s 6b SAR ADC with charge-injection-cell-based DAC
Kyojin D. Choo ; John Bell ; Michael P Flynn
2016 IEEE International Solid-State Circuits Conference (ISSCC)
Year: 2016
Pages: 460-461
Cited by: Papers (21)
IEEE Conferences
- Abstract (html) 国 (662 Kb)

Am 0.6 V 12 b $10 \mathrm{MS} / \mathrm{s}$ Low-Noise Asynchronous SAR-Assisted TimeInterleaved SAR (SATI-SAR)ADC
Wan Kim ; Hyeok-Ki Hong ; Yi-Ju Roh ; Hyun-Wook Kang ; Sun-II Hwang ;
Dong-Shin Jo ; Dong-Jin Chang ; Min-Jae Seo ; Seung-Tak Ryu
IEEE Journal of Solid-State Circuits
Year: 2016 , Volume: 51 , Issue: 8
Pages: 1826-1839
Cited by: Papers (12)

SAR ADC

Lots of ongoing activity in SAR ADCs

Two-step reset method for energy-efficient SAR ADC switching schemes
D Osipov - Electronics Letters, 2016 - IET
[PDF] ieee.org
Viewlt@ISU
.. for SAR ADC', Electron. Lett., 2013, 49, (5), pp. 327-329 5 Sanyal, A., and Sun, N.: 'SAR ADC architecture with $\mathbf{9 8 \%}$ reduction in switching energy over conventional scheme', Electron. Lett. 2013, 49, (4), pp. 248-250 6 Zhu, Z
\# 20 Cited by 20 Related articles All 2 versions os

Energy-efficient hybrid capacitor switching scheme for

[PDF] ieee.org SAR ADC

Viewlt@ISU
$\underline{\text { L Xie, G Wen, }} \underline{\text { J Liu, }}$ Y Wang - Electronics Letters, 2014 - IET
Introduction: In successive approximation register (SAR) analogue-to- digital converters (ADCs), the digital-to \ldots. of DAC capacitor arrays [1-5]. The monotonic switching technique in [1] achieves an 81.26% reduction in switching energy compared with the conventional SAR ADC
20 Cited by 51 Related articles All 5 versions 00

$V_{C M}$-based monotonic capacitor switching scheme for

SAR ADC

[PDF] ieee.org

Viewlt@ISU

Z Zhu, Y Xiao, X Song - Electronics Letters, 2013 - ieeexplore.ieee.org
A novel energy-efficient V CM-based monotonic capacitor switching scheme for successive approximation register (SAR) analogue to-digital converters (ADCs) is proposed. Based on the third reference voltage V CM and monotonic capacitor switching procedure, the ...
is 20 Cited by 93 Related articles All 4 versions 00
22.1 A 90GS/s 8b 667mW 64× interleaved SAR ADC in 32nm digital SOI CMOS
L Kull, I Toifl, M Schmatz, PA Francese... - ... Solid-State Circuits 2014 -
ieeexplore.ieee.org
Forthcoming optical communication standards such as ITU OTU-4 and $100 / 400 \mathrm{~Gb} / \mathrm{s}$ Etherne require ADCs with more than $50 \mathrm{GS} / \mathrm{s}$ and at least 5 ENOB to enable complex equalization in the digital domain. SAR ADCs and interleaved ADCs made impressive.
is 00 Cited by 139 Related articles All 7 versions os

SAR ADC architecture with 98\% reduction in switching energy over conventional scheme

ViewIt@ISU

Sany, N Sun - Electronics Letters, 2013 - ieeexplore.ieee.org
A high energy-efficiency switching scheme for a successive approximation register (SAR) analogue-to-digital converter (ADC) is presented. The proposed method can achieve 98.4\% savings in switching energy when compared to a conventional SAR. The proposed ..
is 90 Cited by 71 Related articles All 7 versions 00

A 0.5 V 1.1 MS/sec $6.3 \mathrm{fJ} /$ conversion-step SAR-ADC with tri-level comparator in 40 nm CMOS
[PDF] ieee.org
ieeexplore.ieee.org
This paper presents an extremely low-voltage operation and power efficient successive-approximation-register (SAR) analog-to-digital converter (ADC). Tri-level comparator is proposed to relax the speed requirement of the comparator and decrease the resolution of $\hat{Z} 50$ Cited by 156 Related articles All 11 versions ob
[PDF] A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure
[PDF] ncku.edu.tw

CC Liu, SJ Chang, GY Huang... - IEEE Journal of Solid 2010 msicdt.ee.ncku.edu.tw
This paper presents a low-power $\mathbf{1 0}$-bit $50-\mathrm{MS} / \mathrm{s}$ suc-cessive approximation register (SAR) analog-to-digital converter (ADC) that uses a monotonic capacitor switching procedure. Compared to converters that use the conventional procedure, the average switching energy
T 05 Cited by 788 Related articles All 10 versions 00

SAR ADC

Lots of ongoing activity in SAR ADCs

An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes
 N Verma, AP Chandrakasan - IEEE Journal of Solid-State ..., 2007 - ieeexplore.ieee.org Abstract: A resolution-rate scalable ADC for micro-sensor networks is described. Based on the successive approximation register (SAR) architecture, this ADC has two resolution modes: 12 bit and 8 bit, and its sampling rate is scalable, at a constant figure-of-merit, from 0Cited by 312 Related articles All 16 versions Cite Save More

A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS

Y Zhu, CH Chan, UF Chio, SW Sin... - IEEE Journal of Solid ..., 2010 - ieeexplore.ieee.org Abstract: A 1.2 V 10-bit $100 \mathrm{MS} / \mathrm{s}$ Successive Approximation (SA) ADC is presented. The scheme achieves high-speed and low-power operation thanks to the reference-free technique that avoids the static power dissipation of an on-chip reference generator. Cited by 323 Related articles All 16 versions Cite Save More

Merged capacitor switching based SAR ADC with highest switching energy-efficiency

V Hariprasath, J Guerber, SH Lee... - Electronics Letters, 2010 - ieeexplore.ieee.org Abstract: A modified merged capacitor switching (MCS) scheme is proposed for the successive approximation register (SAR) analogue-to-digital converter (ADC). The conventional MCS technique previously applied to a pipelined ADC improves signal Cited by 160 Related articles All 10 versions Cite Save More

SAR ADC

Lots of ongoing activity in SAR ADCs

An $820 \mu \mathrm{~W} 9 \mathrm{~m} 40 \mathrm{MS} / \mathrm{s}$ noise-tolerant dynamic-SAR ADC in 90nm digital CMOS

V Giannini, P Nuzzo, V Chironi... - Solid-State Circuits ..., 2008 - ieeexplore.ieee.org Abstract: Current trends in analog/mixed-signal design for battery-powered devices demand the adoption of cheap and power-efficient ADCs. SAR architectures have been recently demonstrated as able to achieve high power efficiency in the moderate-resolution/mediumCited by 220 Related articles All 2 versions Cite Save More
A 10b 100MS/s 1.13 mW SAR ADC with binary-scaled error compensatior CC Liu, SJ Chang, GY Huang, YZ Lin... - Solid-State Circuits ..., 2010 - ieeexplore.ieee.org Abstract: In recent years, due to the improvements in CMOS technologies, medium resolution (8 to 10b) SAR ADCs have been able to achieve sampling rates of several tens of MS/s with excellent power efficiency and small area [1]-[4]. When the sampling rate Cited by 221 Related articles All 5 versions Cite Save More

A 9.4-ENOB 1V $3.8 \mu \mathrm{~W}$ 100kS/s SAR ADC with time-domain comparator

 A Agnes, E Bonizzoni, P Malcovati... - Solid-State Circuits ..., 2008 - ieeexplore.ieee.org Abstract: The ADC-SAR is fabricated in a 0.18 mum 2P5M CMOS process. This SAR-ADC converter achieves $56 \mathrm{fJ} /$ conversion-step FOM with 58 dB SNDR. It uses a comparator, named time-domain comparator, that instead of operating in the voltage domain, transforms Cited by 243 Related articles All 3 versions Cite Save More
SAR ADC

Lots of onaoina activitv in SAR ADCs

A 12b 22.5/45MS/s 3.0 mW 0.059 mm 2 CMOS SAR ADC achieving over 90dB SFDR
 W Liu, P Huang, Y Chiu - Solid-State Circuits Conference ..., 2010 - ieeexplore.ieee.org
 Abstract: CMOS technology scaling has opened a pathway to high-performance analog-todigital conversion in the nanometer regime, where switching is preferred over amplifying. Successive-approximation-register (SAR) is one of the conversion architectures that rely on
 Cited by 148 Related articles All 3 versions Cite Save More

A 1.1 v $50 \mathrm{mw} 2.5 \mathrm{gs} / \mathrm{s} 7 \mathrm{~b}$ time-interleaved c-2c sar adc in 45 cmos
E Alpman, H Lakdawala, LR Carley... - Solid-State Circuits ..., 2009 - ieeexplorє Abstract: High-speed medium-resolution ADCs are widely utilized in high-speed communication systems, such as serial links, UWB, and OFDM-based 60 GHz r Due to complex DSP and low-power constraints, digital basebands are designec Cited by 141 Related articles All 2 versions Cite Save More

A 1.1 v 50mw $2.5 \mathrm{gs} / \mathrm{s} 7 \mathrm{~b}$ time-interleaved c-2c sar adc in 45 nm lp digital cmos
 E Alpman, H Lakdawala, LR Carley... - Solid-State Circuits ..., 2009 - ieeexplore.ieee.org Abstract: High-speed medium-resolution ADCs are widely utilized in high-speed communication systems, such as serial links, UWB, and OFDM-based 60 GHz receivers. Due to complex DSP and low-power constraints, digital basebands are designed in lowCited by 141 Related articles All 2 versions Cite Save More

Data Converter Type Chart

Stay Safe and Stay Healthy !

End of Lecture 27

[^0]: - Background calibration using noisy reference ADC for a 12 b $600 \mathrm{MS} / \mathrm{s}$ $2 \times$ TI SAR ADC in 14 nm CMOS FinFET
 Danny Luu ; Lukas Kull ; Thomas Toifl ; Christian Menolfi ; Matthias Braendli ;
 Pier Andrea Francese ; Thomas Morf ; Marcel Kossel ; Hazar Yueksel ;
 Alessimndro Cevrero; Iter Ozkaya ; Qiuting Huang
 ESSCIRC 2017-43rd IEEE European Solid State Circuits Conference
 Year: 2017
 Pages: 183-186

