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Lecture 27

ADC Design

— Pipeline
« Aperture Uncertainty
« Cyclic Architectures
« Eliminating input S/H

SAR ADC Design
Oversampled Data Converters



Review

Sampling Noise
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If the ON impedance of the switches is small and it is assumed
that C,=C,=C, Rg,=Rss=Rg,, it can be shown that for C,=C,

V =\/kT+kTR GB
2C 4

IN-RMS

Too much GB or too large of Rg,, can increase sampled noise voltage

Too small of Rg,,, will not derive any benefit and will increase power,
area, and driving problems

GB must be large enough to have complete settling



Review from Last Lecture

Sampling Noise

T(s)

Linear Network —

‘vn (UOUT

Theorem 1 If V,(t) is a continuous-time zero-mean noise source with
power spectral density S,, then the spectral density of VU, ,r is given by the

expression
Svom - ‘T(S) 2s:ja) S

Theorem 2 If V(t) is a continuous-time zero-mean noise voltage with
power spectral density S,, then the RMS value of the continuous-time noise
IS given by

\

o0

V. =.[]S.df

RMS
f=0

Note: There are some parts of the hypothesis of this theorem that have not been stated such as
stationary of the distribution and no correlation between samples spaced T seconds apatrt..



Review from Last Lecture

Sampling Noise

Theorem 3 If V(t) is a continuous-time zero-mean noise voltage and
<V(kT)> is a sampled version of V(t) sampled at times T, 2T, .... then the
RMS value of the continuous-time waveform is the same as that of the
sampled version of the waveform. This can be expressed as

n

V =V

RMS RMS

Note: There are some parts of the hypothesis of this theorem that have not been stated such as
stationary of the distribution and no correlation between samples spaced T seconds apatrt..



Review from Last Lecture

Sampling Noise

Theorem 4 If V(t) is a continuous-time zero-mean noise source
and <V(kT)> is a sampled version of V(t) sampled at times T, 2T, ....

then the standard deviation of the random variable V(kT), denoted as O,
satisfies the expression

GA — VMS — VRMS

\VJ R

Theorem 5 The RMS value and the standard deviation of the
noise voltage that occurs in the basic switched-capacitor sampler is
related to the capacitor value by the expression

\A/MS =V =0 = k—T
’ C

R



Review from Last Lecture

Sampling Noise

U Rsw ! +
——GF D\ \AA—s— Vour |
C 1~
V|N T 7T\ C £ Vin VCAP
LV =
<
kT n kT
v = [ g = KT
RMS C RMS C
Key Result, Continuous-time Key Result, Discrete-time noise at

noise at Vg1 Vour



Review from Last Lecture

Sampling Noise

‘vn5 RS5
—E DA
Vin Unas C2
e
Vs Rsa Vi Vs — Cz
dVREF+®—/\/VV\—'——|I “ ( — BZ_(: +C
Cl ] Vour 1 2
_|_

J

If the ON impedance of the switches is small and it is assumed that
C,=C,=C, Rg,=Rss=Rg, it can be shown that noise on output is

v = KTRGB
V= 2kT +kTR GB
e~

§ - \/kT kTR GB
e \2C 4



Review from Last Lecture

Sampling Noise
When is the continuous-time SC noise really of concern?

1
R =
" kT2 (n_+1)2In2f

Ry ax(fCLK,N)

Clock Speed
10 100 1K 10K 100K M 10M 100M 1G
4 4. 7E+15 4. 7E+14 4. 7E+13 4. 7E+12 4. 7E+11 4. 7E+10 4. 7E+09 4. 7E+08 4.7E+07
5 9.8E+14 9.8E+13 9.8E+12 9.8E+11 9.8E+10 9.8E+09 9.8E+08 9.8E+07 9.8E+06
6 2.1E+14 2.1E+13 2.1E+12 2.1E+11 2.1E+10 2.1E+09 2.1E+08 2.1E+07 2.1E+06
7 4.6E+13 4.6E+12 4.6E+11 4.6E+10 4.6E+09 4.6E+08 4.6E+07 4.6E+06 4.6E+05
8 1.0E+13 1.0E+12 1.0E+11 1.0E+10 1.0E+09 1.0E+08 1.0E+07 1.0E+06 1.0E+05
- 9 2.3E+12 2.3E+11 2.3E+10 2.3E+09 2.3E+08 2.3E+07 2.3E+06 2.3E+05 2.3E+04
-% 10 5.2E+11 5.2E+10 5.2E+09 5.2E+08 5.2E+07 5.2E+06 522353.4 52235.3 5223.5
é 11 1.2E+11 1.2E+10 1.2E+09 1.2E+08 1.2E+07 1.2E+06 119706 11970.6 1197.1
S:) 12 2.8E+10 2.8E+09 2.8E+08 2.8E+07 2.8E+06 2.8E+05 27624.46 2762.4 276.2
13 6.4E+09 6.4E+08 6.4E+07 6412821 641282.1 64128.21 6412.821 641.3 64.1
14 1.5E+09 1.5E+08 1.5E+07 1496325 149632.5 14963.25 1496.3 149.63 14.96
15 3.5E+08 3.5E+07 3.5E+06 350701.2 35070 3507 350.7 35.07 3.51
16 8.3E+07 8.3E+06 8.3E+05 82517.92 8252 825 82.51792 8.25 0.83
17 1.9E+07 1.9E+06 194834 19483.4 1948 195 19.4834 1.94834 0.194834
18 4.6E+06 4.6E+05 46144.89 4614.5 461.4 46.1 4.614489 0.461449 0.046145
19 1.1E+06 109594.1 10959.41 1095.9 109.6 11.0 1.095941 0.109594 0.010959

20 2.6E+05 26093.84 2609.384 260.9384 26.09384 2.609384 0.260938 0.026094 0.002609



Review from Last Lecture

Sampling Noise

Cik
v v v ¥
XiN r r2 U
—| S/H » Stagel |—1'»| Stage?2 eee— Stagek eee —» Stagem
Ny n, Nk Nm
<b,> <by> <b> <bn> |«
Pipelined Assembler s
(Shift Register Array) " Xour

Sampling noise from all stages must be referred back to input !

=+ 1‘1)2+ 1 V' +...+ 1 ’
AT AR T AALALT

|V
V+>| o™
INRMS IN1 el LSS
1

[TA

See Katyal,Lin and Geiger, ISCAS, for capacitor sizing for minimization of noise and power
10



Review from Last Lecture

Bootstrapped Switch

Bootstrapping Principle

1 ¢ ——
1 1
D N Ve §
Vg —, DD e
Cx~ ¢1 Cx T _{ }‘
o 01 | _1 (Pl
pIE af R
Bootstrapped Switch 61 _{[; _l_(pl
N

Conceptual Realization

« May have difficult time turning on some switches
* May stress gate oxide ! 11



Pipelined Data Converter Design
Guidelines

Issue Strategy

ADC offsets, Amp Offsets, Finite Op Amp Out-range protection circuitry will remove this
Gain. DAC errors. Finite Gain Errors all problem and can make pipeline robust to these

cause amplifiers to saturate effects if a,’s correctly interpreted
a) Use Extra Comparators

b) Use sub-radix structures

=

Op Amp Gain causes finite gain errors 2. a)  Selectop amp architecture that has
and introduces noninearity acceptable signal swing
b) Select gain large enough at boundary of range to
minimize nonlinearity and gain errors
3. Select GB to meet settling requirements
(degrade modestly to account for slewing)

Op amp settling must can cause errors

Power dissipation strongly dependent 4. Minimize C_, use energy efficient op amps, share or
upon GB of Op Amps shut down op amp when not used,scale power in
latter stages, eliminate input S/H if possible,
_ . _ interleave at high frequencies. Good (near optimal)
Choice of FB Amplifier Architecture noise distribution strategy should be followed.

seriously impacts performance 5. Bottom plate sampling, bootatrapping, clock

advance to reduce aperature uncertainty,critical GB,
parasitic insensitivity needed, 3 dependent upon
architecture and phase, compensation for worst-
case B, TG if needed

Correct interpretation of a,’s is critical 6. a) Accurately set a, values 12
b) Use analog or digital calibration



Pipelined Data Converter Design
Guidelines

Issue

Sampling operation inherently introduces a
sampled-noise due to noise in resistors

Signal-dependent tracking errors at input
introduce linearity degradation

Strategy

Select the capacitor sizes to meet noise requirements.
Continuous-time noise can also be present but is often
dominated by sampled noise. Size switches to meet
settling and noise requirements. Excessive GB will
cause noise degradation in some applications, include
noise from all stages (not just first stage) .

Bootstrapped switches almost always used at input
stage. Must avoid stressing oxide on bootstrapped
switches

13



Aperture Uncertainty

//\ V = VZREF(1+ sinwt)

ov V
| " = " (1) COS W)
Desired at 2
Actual
AV a\/IN VREF

2
AV, V_[2¢

ot

Tk
> AT < =
ov, wV_/2
TK+AT at "
AT < 1

w2"

14



Aperture Uncertainty

/\ V = VZREF(1+ sinwt)

AT < 1
w2

n

Example: If f; (=200MHz, n=14 determine the aperture uncertainty

1
* 27 (2E8)2"

AT = 4.86E-14 = .05psec

Aperture uncertainty requirements can be very stringent ! 5



Elimination of Input S/H

Cik
v v v ¥
X|N S/H S I ) Ik
— > tagel |——| Stage?2 eee— Stage k eee ——| Stagem
Ny n, Nk Nm
<b,> <by> <b> <bn> |«
Pipelined Assembler s
(Shift Register Array) " Xour

Why is input S/H used?

16



Elimination of Input S/H

Cik
v v v ¥
XiN S/H St r r2 U
— > agel ———»| Stage2 —= eee——» Stagek eee ——| Stagem
Ny n, Nk Nm
<b,> <by> <b> <bn> |«
Pipelined Assembler s
(Shift Register Array) " Xour

Why is input S/H used?
Conventional Wisdom:

Because want right sample at input
Because gain stages mess up when input is time varying

But what does an ADC error do to the Boolean output?
n

V,, =D a,d, + floffset) +f(residue)
k=1

Absolutely nothing if over-range protection is provided !
17

But do need correct value of V when creating the residues !!



Elimination of Input S/H

Cik
v v v ¥
X|N S/H St I ) Ik
— > agel ———»| Stage2 —= eee——» Stagek eee ——| Stagem
Ny n, Nk Nm
<b,> <by> <b> <bn> |«
Pipelined Assembler s
(Shift Register Array) " Xour

Why is input S/H used?
Conventional Wisdom:

Because want right sample at input
Because gain stages mess up when input is time varying

Observation: If SC structures used for the gain stages, there is an inherent
sampling that takes place at the input of each stage — including the first stage
18



~ Elimination of Input S/H

X
N .| S/H »| Stage 1l ., Stage2 |2 eee—» Stagek % eee—» Stagem
Ny 17) Nk Nm
<b;> <b,> <b> <bm> |
Pipelined Assembler .
(Shift Register Array) " Xour
CLK
v v v v
XN ——>| Stage1l ", Stage?2 2 eee— Stagek ' eee—» Stagem
Ny ny Nk Nm
<b;> <b,> <b> <bm> |
Pipelined Assembler e
(Shift Register Array) " Xour

Advance sampling clock a little so that sample is taken at quiet time but not too
much to loose over-range protection

« This simply skews the sampling times

* Probably need to bootstrap the input sampling switch

« Bottom plate sampling

19



Fully Differential Architectues

Second-order spectral component is often most significant contributor to
SFDR and THD limitations in single-ended structures

Noise from ADC and other components, coupled through the substrate,
often source of considerable noise in an ADC

« All even-ordered spectral components are eliminated with fully-differential
symmetric structures

« Common mode noise is rejected with fully-differential symmetric structures

Almost all implementations of Pipelined ADCs are fully-differential
Straightforward modification of the single-ended concepts discussed here

Authors often present structures in single-ended mode and then just mention
that differential structure was used

Modest (but small) increase in area and power for fully differential structures

Signal level increases by factor of 2 and device noise typically increases by 20
V2 as well



Pipelined Data Converter Design
Guidelines

Issue Strategy

ADC offsets, Amp Offsets, Finite Op Amp Out-range protection circuitry will remove this
Gain. DAC errors. Finite Gain Errors all problem and can make pipeline robust to these

cause amplifiers to saturate effects if a,’s correctly interpreted
a) Use Extra Comparators

b) Use sub-radix structures

=

Op Amp Gain causes finite gain errors 2. a)  Selectop amp architecture that has
and introduces noninearity acceptable signal swing
b) Select gain large enough at boundary of range to
minimize nonlinearity and gain errors
3. Select GB to meet settling requirements
(degrade modestly to account for slewing)

Op amp settling must can cause errors

Power dissipation strongly dependent 4. Minimize C_, use energy efficient op amps, share or
upon GB of Op Amps shut down op amp when not used,scale power in
latter stages, eliminate input S/H if possible,
_ . _ interleave at high frequencies. Good (near optimal)
Choice of FB Amplifier Architecture noise distribution strategy should be followed.

seriously impacts performance 5. Bottom plate sampling, bootatrapping, clock

advance to reduce aperature uncertainty,critical GB,
parasitic insensitivity needed, 3 dependent upon
architecture and phase, compensation for worst-
case B, TG if needed

Correct interpretation of a,’s is critical 6. a) Accurately set a, values 21
b) Use analog or digital calibration



10.

11.

Pipelined Data Converter Design
Guidelines

Issue

Sampling operation inherently introduces a
sampled-noise due to noise in resistors

Signal-dependent tracking errors at input
introduce linearity degradation

Aperature uncertainty can cause serious errors

Input S/H major contributor to nonlinearity and
power dissipation

Data converters often have stringent SNR and
SNDR requirements

Strategy

Select the capacitor sizes to meet noise requirements.
Continuous-time noise can also be present but is often
dominated by sampled noise. Size switches to meet
settling and noise requirements. Excessive GB will
cause noise degradation in some applications, include
noise from all stages (not just first stage) .

Bootstrapped switches almost always used at input
stage. Must avoid stressing oxide on bootstrapped
switches

Since latency usually of little concern, be sure that a
clean clock is used to control all sampling.

Eliminate S/H but provide adequate over-range
protection for this removal. Reduces power dissipation
and improves linearity!

Use fully differential structures to obtain dramatic
improvements in SNR and SNDR

22



Cyclic (Algorithmic) ADCs

Cik
v v v
XIN M 2 Ik
—{ S/H » Stage 1 »  Stage 2 eee— Stage k eee — Stagem
i n2 Nk N
<b;> <b,> <b> <b>
Pipelined Assembler N
(Shift Register Array) N Xour
Cik
!
XL S/H » Stage 1
l1,2,.f'm-1

<b,> <b,> <b,>

Pipelined Assembler
(Shift Register Array)

Cyclic (algorithmic) ADC
Reduces throughput but also area

25



Cyclic (Algorithmic) ADCs

CLK
v
X& S/H »| Stagel
l1,2,.f'm-1
Ng,Ny,..My
<b;> <b,> <b,> <
Pipelined Assembler N
(Shift Register Array) "
Cik Cik
v v
"W gH | staget .
e >
tage . Xin Stage 1 —r>
Pipelined Assembler | Pipelined Assembler |
(Shift Register Array) n (Shift Register Array) n

Can bypass bootstrap after initial sample is taken

26



SAR ADC
Sample |
YN old }k

/ DAC e DAC

Controller

DAC Controller stores estimates of input in Successive
Approximation Register (SAR)

At end of successive approximation process, ADC output is in SAR
Eliminates the power-consuming amplifiers of the pipelined ADC
Much slower than pipelined ADC

S/H at the input is essential

Can have excellent power performance

Widely used structure with renewed attention in recent years -



SAR ADC

__| Sample ,
VINTT ol BN
L
- Vrer l
¢ y

DAC
DAC I ;n Controller

Any DAC structure can be used

In basic structure, single comparator can be used
Performance entirely determined by S/H, DAC, and
comparator

Very simple structure and relatively fast design
procedure

If offset voltage of comparator is fixed, comparator
offset will not introduce any nonlinearity

28



SAR ADC

__| Sample ,
VINTT ol BN
L
- Vrer l
¢ y

DAC
DAC I ;n Controller

Any DAC structure can be used

In basic structure, single comparator can be used
Performance entirely determined by S/H, DAC, and
comparator

Very simple structure and relatively fast design
procedure

If offset voltage of comparator is fixed, comparator
offset will not introduce any nonlinearity

29



Typical Operation

SAR ADC

(shown for 5 bits)

VREF T
T 10000
T : 01100 01101
Vi — == ‘ :
4 01110
01000
>'C

Tew

-
S/H | Bitl [ Bit2 | Bit3 | Bit4 | Bit5 | S/H

SOC EOC

‘CLK
| Sample
Vin Hold ™
L

VREF
¢ Y v
DAC DAC

n Controller

Requires n+1 clock cycles
Can be extended to large
number of bits (16 or more)
Comparator requires large
CM range

Speed limited by S/H

30



SAR ADC

Sample |
Typical Operation (shown for 5 bits) o [

VRer
¢ Y v
VREF T DAC DAC

" n Controller

T 10000

T ‘ 01100 01101
Vi —= ‘ : '

4 01110

01000
'(>
TCLK
-—p
S/H Bitl [ Bit2 | Bit3 | Bit4 | Bit5 S/H
SOC EOC

« Two or more bit periods can be added to S/H
« Slows overall operation proportionally but overhead small for largen 31



SAR ADC

» Does not recover from errors Y v
« Particularly problematic when errors occur on earlier PAC ot connaer
bits
« Over-range protection can be added but at expense of
additional clock periods
Veer + VREF - E(r:ror on First
1 Lo 1 11000 Output
1 %1t1p10t + 10010 0000
T 10000 01110 1 10000 10100 10001
1 Vi —
V== o111l -+
01100 4
1 01000 1
T . .
TCLK TCLK
| s [sit1[sie2 [Bie3 [sita [Bits | s | | sm  [sita[sit2 [sit3[sis [Bits]| s |
} } } }
SOC EOC SOC EOC

32



SAR ADC

Crk

Note notation difference Vin— AP "
XouT=<dn-1,9n-2,-.d 0> _ﬂ‘ y l
dy is the Least Significant Bit (LSB) ¢ A2
d,.; is the Most Significant Bit (MSB) DAC - CO%};W
Charge Redistribution DAC could be used in SAR ADCs
11 1 | Your
C, C, Cz; o0 C, —~ C,
S1 S, S3 Sh
NN EEN |
Vier T g 1}

« Capacitors usually binary weighted

» With this DAC, typical common-mode input required for comparator

« Standard S/H also required

33




Alternate Charge Redistribution DAC

SAR ADC  -=

Ve ~
Ci| C, Cs Cos . :[I_
T~ 2"C T~ 2"C T~ 2"c T~ 2C T~ C 1~ C '
gf 3(195 gf 3¢s gf dT¢s gnde% gfﬁbs d)xfﬂcbs ¢s D
; s 2

During sampling phase, input is sampled on all capacitors

During successive approximation process, capacitors are alternately connected
to ground or Vgee

Voltage on common node will converge to O

Comparator is always comparing to ground thus reducing common-mode
nonlinearity errors

Note input sample is not held independently throughout the entire conversion
process

Bootstrapped switch is critical during sampling phase

Parasitic capacitances on V. node do not affect final output (Bottom plate)
Major source of power dissipation is in the charge redistribution process



SAR ADC

-

Q= iczn_i (diVREF _Vc)_CVc =CVier idi 2" —CV, (iZ”i +1j
i=1 — <

Q

~CVeee 34,27 OV, (2)

R
T
~ Vrer
. . . ¢ Y v
Alternate Charge Redistribution DAC SV P
VC >
Cy | C> Cs Cn1 C :‘l
—~ 2"c T~ 2"2C T~ 2" 1~ 2C T~ C T~ C
|
S S S d)S d)S ¢S d)S DAC
L s (g 1?} f \ N fﬂ ) f (
VRer ‘ L Y
VIN
- . Define Q to be the charge sampled onto capacitors
C =C2  1<i<n Q charge samp 0 cap
| Q=Q.,, anddefine g =d and ¢ =d
Q=2"CV,, n
Q = ZCi (diVREF _VC)_CVC
i=1

35



SAR ADC

Alternate Charge Redistribution DAC

Ve
Ci| C, Cs Cn1 Cn
T 2%'c T~ 2™2C T~ 2™ T~ 2C T~ C T~ C
gf c|T‘bs gf 0|T‘bs gf 0|T‘bs g”l ﬁd)s 853% ¢£T¢s bs
Ve 27 1 2 v

CV... Zn:di 2" —CV, (2")=2"CV,,
n 2n—i

Vin =Vrer Zdi 2—n —Ve
i=1

VIN :VREF Zdi 2" —
i—1

If the SAR output is adjusted so that

_VREF SVC < VREF
2" 2"

It follows that
n i V
VREF Zdl 2
i=1

;EF VIN _VREF Zd 2 +V

REF

2n

A

DAC
Controller

36




SAR ADC

Alternate Charge Redistribution DAC

VC >
Ci| C. Cs Cn1 Cn :D‘
—~ 2™c T~ 2"C ~ 2" T~ 2C 1~ C 1~ C ‘
gf c|T‘bs gf 0|T‘bs gf 0|T‘bs gnf3¢s 853% ¢£T¢s bs Co'iﬁgner
e i 2 15 2

VIN

Binary Search Process Description
1. After sampling V, with ¢g, envision closing all g switches and ¢y V. will be -V.
2. Close d; It follows that

Cl(VREF— ) - ch ~CV, ZCVV,N+CV,N

solving obtain V., =2V -V,

thus V.>0 =d,=0
3. Since d,=0, close g, and now close d,. It follows that

V - 2_ZVREF \/IN

thus V. <0 =d,=1
37



Alternate Charge Redistribution DAC

SAR ADC

Ve
e.| . c Coa Cn
~2"c T~ 2mC ~ 2™ T % T © T° ‘
N I S N NN S
W a2 w2 20 w2t 2
Vin

Binary Search Process Description
4. Since d,=1, leave d, closed and now close d;. It follows that

Ve = 2_3VREF + 2_2VREF —Vin
thus V.>0 =4d,=0
5. Since d;=0, open d; and now close d,. It follows that
Ve = 2_4VREF + 2_2VREF —Vin
thus V.<0 =d,=1
6. Since d,=1, keep d, closed and now close d;. It follows that
Ve = 2_5VREF + 2_4VREF + 2_2VREF —Vin

thus Vc>0 =d;=0
38



SAR

ADC

VRer +
T Output
4 01010
VIN _;_
01010
T 0000
0 01000 01000 01010
—_— >t
-VRrer +
TCLK
S/H | Bit1 | Bit2 | Bit3 | Bit4 | Bit5 | S/H
SOC EOC

Alternate Charge Redistribution DAC

cl
i) f“’ fw

el
i

t

J7d>s

Fien

oooooooooo
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SAR ADC

C-2C Array for Charge Redistribution DAC

Ve S
Ci| C, Cs Co1 Cn| | :D‘
T~ 2™C T~ 2™2C T~ 2"C T~ 2C T~ C T~ C ‘
1 T:kbs gf :Kd)s gf chbs 1 :chs gf}d)s ¢X£T¢s s D
e s 2 2 av

Can a C-2C array be used for the charge-redistribution DAC?

Yes — but internal nodes would all need to settle !

Can a counter be used rather than a binary search to obtain the SAR code?

Yes — but conversion time would be long with worst-case requiring 2" periods



SAR ADC

« Concepts are often expressed in single-ended structures
» Fully differential structures widely used
» Distinction between reference voltages often not clearly stated

A A A

VRer1 - VRer2 -

|
|

Vrer +

Input Range
o
|
T

Input Range

(O]
[eT0]
e
[¢°]
- |« V 4
VCM o ™M 0
>
o
£
0T -Veepr — — -VRera ——
0<Vy 5VREF “Veerr SVin SVrers N, SV <N,
Veu =5 Veu =0 . .
2 ; Fully Differential
Single Ended Single Ended
Symmetric

Is Common-Mode input O or Vgge/27?
Is maximum input Vgep, 2Vger OF 4Viger:

» Single-ended Vgge
» Single-ended Differential Input +Vgep, -Viee
 Differential Input



Example of Fully Differential Implementation

United States Patent s {11] Patent Number: 4,803,462
Hester et al. 451 Date of Patent: Feb. 7, 1989
[54] DISTRIBUTI Exammer—T 1. Sloy.
CDNVERTER WITH INCREAbED COMMON A y Agent, or Firm—St; n n C. Braden; James T,
MODE REJECTION f - Mel I m Sharp
[75] Inventors: Rl hard K., Hester, wrighty s 'i] AAAAA CT

fichiel de Wit, Da “ b°u‘ f Tex. An A/D converter includes & positive arrav of binary
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Another example of Fully Differential Implementation
with different switching sequence and different

references.

United States Patent [ (1] Patent Number: 4,803,462
Hester et al. [45] Date of Patent: Feb. 7, 1989

{54] CHARGE REDISTRIBUTION A/D md?y Examiner—T. 1. Sl

CONVERTER WITH INCREASED COMMON A ey, 43,’? or Firm—Stanton C. Braden; James T.
MODE REJECTION m_f fort; Mel ]V1 Sh arp
[75] Inventors: Richard K. Hester, Whitewright; 57 ABSTRACT
Michiel de Wit, Dallas, both of Tex. 4, oy converter includes a positive arrav of binarv




Goal:

Goal:

vraf C—

SAR ADC

Charge Redistribution ADC with reduced charge redistribution energy

Reduce unnecessary switching inherent in the original process by first
switching all capacitors to Vrgr and then returning to ground if test fails.

Only switch if needed!

vipD_

-

-

T

ST

2

S

s,T

sq

Se]

Sn]

S|

See].

5 q S

PoF] A 10-bit 50-MS/s SAR ADC with a monotonic
capacitor switching procedure

CC Liu, SJ Chang, GY Huang... - IEEE Journal of Solid ...,
msicdt.ee.ncku.edu.tw

This paper presents a low-power 10-bit 50-MS/s suc-cessive approximation register (SAR)
analog-to-digital converter (ADC) that uses a monotonic capacitor switching procedure.
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SAR ADC

Charge Redistribution ADC with reduced charge redistribution energy

Goal: Only switch if needed!
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SAR ADC

Charge Sharing ADC with reduced charge redistribution energy

Goal: Have only passive switching
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SAR ADC

Charge Sharing ADC with reduced charge redistribution energy

Goal: Have only passive switching
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Abstract: A fully dynamic SAR ADC is proposed that uses passive charge-sharing and an
asynchronous controller to achieve low power consumption. No active circuits are needed

for high-speed operation and all static power is removed, offering power consumption

Cited by 286 Related articles All 2 versions Cite Save More



J

SAR ADC

Lots of ongoing activity in SAR ADCs
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